Controlling the strontium-doping in calcium phosphate microcapsules through yeast-regulated biomimetic mineralization

نویسندگان

  • Miaojun Huang
  • Tianjie Li
  • Ting Pan
  • Naru Zhao
  • Yongchang Yao
  • Zhichen Zhai
  • Jiaan Zhou
  • Chang Du
  • Yingjun Wang
چکیده

Yeast cells have controllable biosorption on metallic ions during metabolism. However, few studies were dedicated to using yeast-regulated biomimetic mineralization process to control the strontium-doped positions in calcium phosphate microcapsules. In this study, the yeast cells were allowed to pre-adsorb strontium ions metabolically and then served as sacrificing template for the precipitation and calcination of mineral shell. The pre-adsorption enabled the microorganism to enrich of strontium ions into the inner part of the microcapsules, which ensured a slow-release profile of the trace element from the microcapsule. The co-culture with human marrow stromal cells showed that gene expressions of alkaline phosphatase and Collagen-I were promoted. The promotion of osteogenic differentiation was further confirmed in the 3D culture of cell-material complexes. The strategy using living microorganism as 'smart doping apparatus' to control incorporation of trace element into calcium phosphate paved a pathway to new functional materials for hard tissue regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel

BACKGROUND Researchers are looking for biomimetic mineralization of ena/mel to manage dental erosion. This study evaluated biomimetic mineralization of demineralized enamel induced by a synthetic and self-assembled oligopeptide amphiphile (OPA). RESULTS The results showed that the OPA self-assembled into nano-fibres in the presence of calcium ions and in neutral acidity. The OPA was alternate...

متن کامل

Multiphase intrafibrillar mineralization of collagen.

In the past, the two major biomineralization motifs, biosilicification and biocalcification, were considered as two discrete processes. However, there is increasing evidence of the existence of an inextricable relationship between biosilica and calcium-based biominerals. The recent discovery of a unique silica–chitin–aragonite biocomposite in one genus of demosponges (Verongida) introduces a no...

متن کامل

Enhanced Osteogenicity of Bioactive Composites with Biomimetic Treatment

PURPOSE This study aimed to explore if initiation of biomimetic apatite nucleation can be used to enhance osteoblast response to biodegradable tissue regeneration composite membranes. MATERIALS AND METHODS Bioactive thermoplastic composites consisting of poly(ε-caprolactone/DL-lactide) and bioactive glass (BAG) were prepared at different stages of biomimetic calcium phosphate deposition by im...

متن کامل

Human mesenchymal stem cells response to multi-doped silicon-strontium calcium phosphate coatings.

The search for apatitic calcium phosphate coatings to improve implants osteointegration is, nowadays, preferentially focused in the obtaining of compositions closer to that of the inorganic phase of bone. Silicon and strontium are both present in trace concentrations in natural bone and have been demonstrated, by separate, to significantly improve osteoblastic response on calcium phosphate bioc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016